АВТОМАТИЗИРАНА АНАЛИТИКА: ПРОГНОЗИРАНЕ НА ВРЕМЕВИ РЕДОВЕ В ИКОНОМИКАТА И БИЗНЕСА

dc.contributor.authorГерунов, Антон
dc.date.accessioned2025-05-20T10:53:29Z
dc.date.issued2016
dc.description.abstractThis paper demonstrates a feasible approach to fit an automated forecasting algorithm on four crucial economic time series from the Bulgarian economy. We use data on GDP growth, inflation, unemployment, and interest rates and estimate a large number of possible models. The best ones are selected by taking recourse to the Akaike Information Criterion. The optimal ARIMA models are studied and commented. Forecast accuracy metrics are presented and a few major conclusions and possible model applications are outlined. The paper concludes with directions for further research.
dc.identifier.issn1313-8758
dc.identifier.urihttp://research.bfu.bg:4000/handle/123456789/2587
dc.language.isoother
dc.publisherБургаски свободен университет
dc.relation.ispartofseriesp.164
dc.subjectAutomated analytics
dc.subjectforecasting
dc.subjecttime series
dc.subjectARIMA
dc.subjectbusiness forecasting
dc.titleАВТОМАТИЗИРАНА АНАЛИТИКА: ПРОГНОЗИРАНЕ НА ВРЕМЕВИ РЕДОВЕ В ИКОНОМИКАТА И БИЗНЕСА
dc.title.alternativeAUTOMATING ANALYTICS: FORECASTING TIME SERIES IN ECONOMICS AND BUSINESS
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
164_172-2016. SUP IX.pdf
Size:
388.11 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: