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Abstract. This paper addresses basic SAR mapping equations, polynomial description of the 

satellite orbit. Range and Doppler equations, Earth ellipsoid equation and interferometric equation 

are defined in order to compute the coordinates of the target point placed on the Earth surface. 

Least mean square method for polynomial coefficient determination is developed. An algorithm 

for transformation between Earth-centered Earth-fixed (ECEF) coordinates and geodetic 

coordinates is presented. 
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INTRODUCTION 

Synthetic Aperture Radar (SAR) is a coherent active microwave imaging 

system. SAR emits high informative pulses and records backscattered information from 

the target in a form of a complex signal carrying amplitude and phase information about 

reflective properties of an Earth surface. Interferometric SAR (InSAR) technique makes 

use of phase difference information extracted from two complex valued SAR images 

acquired from different orbit positions. This information can be used to determine 

geological and geophysical quantities such as topography of the Earth surface, slope, 

surface deformation (volcanoes, landslides, earthquakes) glaciers’ movement studies, 

vegetation change etc. The importance of InSAR application is based on its high spatial 

resolution and good potential precision and capabilities for automated generation of 

Digital Elevation Model (DEM). 

The image product from SAR is a picture of the Earth surface can be 

considered as a map with high resolution and scale accuracy. A profound problem arises 

in geolocation, i.e. determining the overall location of the image in geographic 

coordinates, namely geographic latitude longitude and altitude. The most effective 

method of geolocation is tiepointing in which known geographic features are matched 

between the image and map data obtained by conventional methods. 

SAR being active radar instrument, provides precise information on the range 

from the satellite to the target and the Doppler history of a reflected by the target signal. 

These quantities can be related to precise determined satellite’s coordinates and Earth 

surface coordinates. Therefore, it is possible to compose and solve a set of equations 

giving the Earth location for each image pixel to a high precision. 
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An automatic and precise orthorectification, co-registration, and sub-pixel 

correlation of satellite Images, application to ground deformation measurements is 

performed in [1]. The problems of interferometric SAR for DEM generation and 

validation of an integrated procedure based on multisource data are considered in [2, 3]. 

In InSAR processing simulation of interferogram is a common practice. It is used as 

synthetic data to test and validate the whole chain of InSAR processing from the 

interferogram creation to the DEM reconstruction. In [4] an algorithm to simulate the 

geocoding processing and phase to height conversion is suggested. The algorithm 

includes DEM of terrain simulation and interferogram simulation with DEM and 

satellite orbit parameters. A novel across-track SAR interferometry simulation for 

repeat-pass satellite InSAR studies are considered in [5,6,7,8]. 

The transformation between Earth-centered Earth-fixed (ECEF) coordinates 

and geodetic coordinates is required while processing SAR images in the cartography. 

There exist many papers devoted to this problem in early decades and a number of 

methods that can be divided into two categories: exact approaches and approximations 

have been proposed. Presently, there have been many different methods to approximate 

the exact transformation [9,10,11]. In [12] exact transformation formulas from Earth-

fixed coordinates to geodetic coordinates are derived and compared with the 

approximation methods in complexity and in sensitivity to computer round–off error. In 

[13] an iterative method based on the Newton-Raphson (NR) approach is developed. 

This method exhibits efficiency and accuracy and is free from singularity and non-

convergence except in a small region near the center of the Earth. 

The main purpose of this work is twofold: first, definition of basic SAR 

mapping equations: range, Doppler and interferometric, and polynomial description 

SAR satellite orbit; second, description of an algorithm for transformation from Earth-

Centered Earth-fixed coordinates to geodetic coordinates. 

BASIC SAR MAPPING EQUATIONS 

The coordinates of a target point fixed on the Earth surface can be determined 

by three SAR mapping equations: range equation, Doppler equation and Earth surface 

model equation if the height h of the target with respect to a reference Earth ellipsoid is 

known. Range equation is defined by the expression for the modulus of the slant range 

distance between SAR position S and target point P [2, 3]: 

 

(1)  SP  modSR , 

 

where  TPPP ZYX ,,P  is the target location vector,  TSSS ZYX ,,S  is the 

satellite  location (state) vector; (.)T is the transpose index. The range equation, 

describes a sphere of radius SR , centered in S . 
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The slant range distance SR  is related to the slant range coordinate (r) of the SAR 

image trough the equation 

 

(2) )1(0  rRRR SS  

 

where 0SR  is the nearest slant range to the SAR image. 

The Doppler equation is defined by the expression for Doppler centroid 

frequency [2,3] 
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where   is the radar wavelength, SV  is the relative satellite – target velocity 

vector. Considering a zero-Doppler focusing algorithm the Doppler equation can be 

written as  

 

(4) 0)(  SVPS . 

 

This equation, identifies a plane orthogonal to the vector SV . 

SAR image formation comprises kinematical orbital parameters, SAR 

parameters, and SAR processing parameters. SAR data correspond to an area of about 

100 x 100 Km2. 

The Earth model equation has the form [14] 
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where ER  is the equatorial radius of the Earth equal to 6378137 m; h is the height of 

the target with respect to a reference Earth ellipsoid;  

 

(6) ))(1( hRfR EP  ; 

 

where f   1/298.257223563  is the flattening factor of the reference ellipsoid. 

Given a slant range SR  and Doppler centroid Df which have been computed 

for each pixel by the SAR processor and the height h of the target with respect to a 

reference Earth ellipsoid, it is possible to solve the system of equations (1), (3), (5) with 
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respect to Earth location target point  TPPP ZYX ,,P by an iterative numerical 

technique (the system is non-linear). 

In InSAR topographic applications, the height of pixel, h, is unknown and eq. 

(5) cannot be applied to obtain  PPP ZYX ,,P . In this case target coordinates can be 

derived using as a third constrain to SAR mapping equations (1) and (3) the 

interferometric phase equation defined for particular  PPP ZYX ,,P from the 

interferogram based on SLC images of both master SAR and slave SAR. 

In order to convert the interferometric phase field to terrain height relief a 

rigorous procedure transforming image space coordinates, azimuth, slant range and 

interferomeric phase to object space coordinates,  PPP ZYX ,,P , is applied. For each 

pixel with coordinates azimuth (as), range (r) from the interferogram, the object space 

coordinates,  PPP ZYX ,,P  are derived using two basic SAR mapping equations 

defined for the master SAR image and interferometric equation. The range and Doppler 

equations can be written as follows 

 

(7)  PS
M  modSR - range equation; 
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DF - Doppler equation. 

 

The interferometric equation is defined by the expression for the 

interferometric phase estimated by computing, for each target pixel P in the azimuth, 

slant range coordinate plane of acquisition, the difference in the SAR-target travel path 

distance for the two satellite positions 
M

S  and 
S

S .  

 

(9) 
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where  TPPP ZYX ,,P  is the vector of unknown coordinates, ),( ras is the 

interferometric phase defined in coordinates (as, r) of the unwrapped  interferogram. 

The vector M
S  and S

S  for each pair coordinates (as, r) is defined by the expression 

for )(asS .  

This procedure of the target point  TPPP ZYX ,,P  determination is 

performed for each pixel of the unwrapped interferogram, thus an irregular 3-D grid of 

pixels is obtained. The coordinates of the pixels are defined in the geocentric Cartesian 
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system. Therefore, a transformation to a cartographic system and to optometric heights 

has to be performed. 

POLYNOMIAL MODEL FOR THE SATELLITE ORBIT DESCRIPTION 

In order to be solved non-linear system of equations (7, 8, 9) in respect of 

target point  TPPP ZYX ,,P the state location vector of satellites has to be expressed 

by azimuth coordinates of the SAR image (as, r).  Even considering full-frame 

processing, a satellite trajectory can be well approximated by a low-order polynomial 

function. More precisely, for a third-order fitting, satellite position is defined by the 

following vector polynomial equation for the satellite location (state) vector S: 

 

(10) dcbaS 
32

asasas ttt , 

 

where vectors {a, b, c, d} can be obtained by means of an LMS adjustment using a 

priory known satellite location (state) vectors whose coordinates are available in the 

image header file; 0tttas   is the time azimuth parameter, t is the time of acquisition, 

0t  is the acquisition time of the first image azimuth. 

 For a particular target point  TPPP ZYX ,,P  the time t is related to the 

azimuth coordinate (as) of the SAR image trough the equation [2, 3] 

 

(11) )1(0  asTtt , 

 

where T is the time pixel size in azimuth direction; (as) is the index of SAR image in 

azimuth direction. 

Thus the azimuth parameters is defined by )1(  asTtas . The coordinates 

of the satellite state vector  TSSS ZYX ,,S  and satellite vector velocity SV  can be 

expressed as functions of the image azimuths. 

LMS determination of polynomial coefficients 

In order to define two SAR mapping equations and one interferometric 

equation in image space coordinates (as, r) the satellite orbit coordinates in particular 

time of acquisition related to the azimuth coordinates of the SAR image, a polynomial 

interpolation of vector coordinates  TSSS ZYX ,,S  is applied. 

 Let T
SSS pZpYpXp )](),(),([)( S be the vector measurements of satellite 

coordinates, p  is the number of the emitted pulse (the number of the measurement). Let 
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T
SSS pZpYpXp )],(),,(),,([),( cbaλS  be the vector of third order polynomials, 

which in matrix form can be written as 

(12) 
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where 0)( tTpt p   is the time parameter, NNp ,0 , 











T

t
N 0

0 int  is the pulse 

number for acquisition of the first SAR image line, 0t is the acquisition time of the first 

SAR image line, T],,[ cbaλ  , Taaaa ],,,[ 3210a , Tbbbb ],,,[ 3210b and 

Tcccc ],,,[ 3210c are vectors of estimated coefficients. Vector coefficients can be 

derived by the method of least mean square (LMS) errors. Generalized iteration 

procedure to estimating vector polynomial parameters includes: 

 

1. Computing the vector parameters rλ on r-th iteration 

 

(13) λΔλλ  1rr  

  

2. Computing vector of LMS errors λΔ  

(14)   Sλ ΔDBBDBΔ ....
1 TT 

 , 

where     T
ZYX SSS

pp ],,[,  λSSΔS  is the vector measurements errors, 

which in matrix form can be described by the following equation:  
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Elements of the matrix 
λ

λS
B






),(ˆ p
 are coefficients of first order Taylor 

expansion. For example if aλ  , then the matrix
a

a
B






),(pX S  of dimensions [N-N0, 
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4]. Elements piB  of the matrix B can be expressed as
i

iS
pi

a

apX
B






),(
, 

where NNp ,0 , 3,0i . 

For 0i : 1
),(

0
0 






a

apX
B iS

p . 

For 1i , p
iS

p t
a

apX
B 






1
1

),(
. 

For 2i , 2

2
2

),(
p

iS
p t

a

apX
B 




 . 

For 3i , 3

3
3

),(
p

iS
p t

a

apX
B 




 . 

 Matrix D of dimensions [N-N0, N-N0] is diagonal with elements reciprocal to 

the dispersions of measurements. 

 Once the vector λ  of coefficients has been defined for the area of observation 

polynomial description of the vector satellite coordinates S as a function of an azimuth 

image pixel’s coordinate (as) can be written as 

(16) 
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where 0tttas  , t is the acquisition time related to the azimuth coordinate (as) of the 

SAR image by )1(0  asTtt , then )1(  asTtas , where T is the azimuth 

time pixel’s size. 

The described above procedure is applied to compute azimuth coordinates of 

both master SAR SM and slave SAR SS satellites. 

Co-registration problem 

In order to obtain exact values of target point’s coordinates proper space 

alignment between the two SAR images (master and slave) should be performed on a 

pixel by pixel basis, with accuracy of the order of one tenth of the resolution cell size, or 

better. Co-registration mapping of the slave to master images can be performed by a 

polynomial of a second order that approximates the pixel-to-pixel displacement. It is 

assumed that the targets lie on an ellipsoidal Earth surface. In satellite-borne Synthetic 

Aperture Radars such as ERS and Envisat ASAR, the sensor velocity and attitudes are 

so stable that the master-slave deformation of an entire frame (100 × 100 km) can be 

well approximated by the following polynomial [14]: 
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(17) 
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where Mr , Mas)( are range and azimuth coordinates of the master SAR 

image; Sr , Sas)( are range and azimuth coordinates of the slave SAR image.  

Co-registration coefficients can be computed by a least mean square regression 

based on a regular grid of points displaced over the whole frame of the SAR image. 

In order the master SAR satellite SM, slave SAR satellite SS and SAR image 

pixel P to lie in the same Doppler centroid plane, vector coordinates of the position of 

slave SAR satellite SS
 has to satisfy the following equation 

 

(18)    SMMSM
SSVSS  mod

2
. DF

. 

Denote  SM
SSB   and  SM

SS  modB  vector baseline and baseline 

length (slave to master distance). For each azimuth coordinate (as)M from the master 

image, the azimuth coordinate (as)S for the slave image is computed. 

TRANSFORMATIONS FROM EARTH-CENTERED EARTH-FIXED 

COORDINATES TO GEODETIC COORDINATES 

The transformation from GEI to geodetic coordinate system can be performed 

by algorithm described in [13]: 

1. Given coordinates of the target point vector  PPP ZYX ,,P , Earth 

ellipsoid parameters length of the semimajor axis R (R  6378.137 km), length of 

semiminor axis r (r  6356.7523142 km), flatteninig of the ellipsoid f (
R

rR
f


 ), 

iterative accuracy , compute coordinates 0x , 0z  by expression 

(19)  2
1

22
0 PP YXx  , PZz 0 . 

 

2. Compute coefficients of the quartic order polynomial )(tf  
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(21) 0rzA  , 02RxB  ,  222 rRC  . 
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Iteration procedure 

3. Compute geodetic longitude  by expression 

 

(22) ),(2arctan PP XY  

 

4. Compute the parameter 0t , initial guess for the variable t of the quartic order 

polynomial 
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5. Compute next value of the parameter t by 
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where )(' ktf is the first derivation of )(tf for ktt  . 

 

6. If  1kk tt  compute geodetic latitude L by 
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7. Compute the geodetic height 
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The described algorithm exhibits good efficiency and accuracy. There not exist 

singularity and non-convergence for all points in space excluding a region near the 

center of the Earth of radius about 50 km. 

CONCLUSIONS 

In this paper basic SAR mapping equations, polynomial approximation of the 

satellite orbit have been described. Range and Doppler equations and Earth ellipsoid 

equation have been defined in order to compute the coordinates of the target point 

placed on the Earth surface. Interpolation polynomial of third order for satellite orbit has 
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been described. Least mean square method for polynomial coefficient determination has 

been developed. An algorithm for transformation from geocentric coordinates to 

geodetic coordinates has been considered 
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