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Abstract: In this work SAR/ISAR (Inverse Synthetic Aperture Radar/Inverse Synthetic 

Aperture Radar) parametric image reconstruction concepts are discussed. First, an image 

reconstruction procedure based on l0 norm optimization is developed and applied over 

reduced number of measurements defined by randomly generated azimuth and range sensing 

matrices. Second, Kalman algorithm is applied for ISAR image extraction. Vector 

measurement and state equations are derived. Approximation functions based on LFM signal 

are defined. Results of numerical experiments are presented.    
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1. Introduction 

 

Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are advanced 

tools for monitoring the targets and relief of the earth's surface by probing with high 

informative electromagnetic pulses and registration of backscattered radiation [1-2]. The 

resulting images are depicted in a two-dimensional coordinate system defined by the slant 

range and azimuth (cross range) coordinates. High resolution on the slant range direction is 

realized by using wide bandwidth emitted pulses while high resolution on the cross range is 

achieved by coherent summation of reflected signals during the aperture synthesis, the time of 

observation.  

Conventional nonparametric SAR/ISAR imaging algorithms are based on the spectral-

correlation theory of the matched filter. The transmitted signal bandwidth and the synthetic 

aperture length limit their resolution capability. Compressed sensing (CS) and Kalman 

recurrent filtration are new approaches for the target imaging beyond the Nyquist sampling 

constraints. The former method is applied to solve the imaging problem using convex 

optimization. The latter method requires a recurrent minimum mean square definition of the 

problem to extract the image of the target. SAR imaging algorithms with a reduced number of 

collected samples by application of a CS method for along-track interferometric SAR is 

suggested in [3]. A SAR high resolution imaging method for sparse targets reconstruction 

based on l1 norm minimization with only a small number of SAR echo samples is discussed in 

[4]. A data acquisition system for wideband SAR imaging and reconstruction of sparse signals 

from a small set of non-adaptive linear measurements based on CS by exploiting sparseness 

of point-like targets in the image space and by solving a convex l1 minimization problem is 

presented in [5]. 3D imaging method for stepped frequency ground penetrating radar based on 

compressive sensing is suggested in [6]. A fast approach for overcomplete sparse 

decomposition based on l0 smoothed norm and applications of compressed sensing for 

multiple transmitters multiple azimuth beams SAR imaging are presented in [7] and [8], 

respectively. Generating dense and super-resolution ISAR image by combining bandwidth 

extrapolation and compressive sensing is discussed in [9]. 

The main goal of this work is to suggest SAR/ISAR image reconstruction algorithms by 

applying compressed sensing technique and recurrent Kalman filtration. The rest of the paper 



is organized as follows. In Section 2 SAR/ISAR signal model is described. In Section 3, a 

sparse decomposition approach to solve the image reconstruction problem based on l0 norm 

minimization is discussed. In Section 4, Kalman recurrent procedure is described. In Section 

5, conclusions are made. 

 

2. SAR/ISAR signal model 

Assume the SAR/ISAR transmitter emits series of LFM electromagnetic pulses analytically 

described by the expression 
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where pT is the pulse repetition period. 



c

2  is the angular frequency. Np ,1  is the 

current number of the emitted LFM pulse. N is the total number of emitted pulses during 

aperture synthesis, c  3.108 m/s is the speed of the light, 
kT

F
b


 is the LFM index. ΔF is the 

bandwidth of the emitted pulse, and defines the range resolution, FcR  2/ . T is the time 

duration of LFM pulse. 

The deterministic component of the SAR signal reflected from the ij-th point scatterer for 

particular p as a finite function can be written as 
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ija  is the reflectivity coefficient of the ij-th point scatterer, 
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  is the time delay of 

the signal from theb ij-th point scatterer. The deterministic component of the SAR/ISAR 

signal reflected from the entire surface can be regarded as a geometrical sum of the signals 

reflected by all point scatterers from the surface of observation and can be expressed as 
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where Tkptt ij  )()(min 1  is the fast time measured on the range direction. 1)(,0 max  pKk  

is the range sample (fast time) index. T  is the timewidth of the LFM sample. )(max pK  is the 

number of the range bin where the SAR signal from the furthest point scatterer is detected, 
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  is the time delay of the signal from the nearest point scatteter, )(min pRij  

is the distance to the nearest point scatteter on the surface of observation, calculated for the p-

th emitted pulse. 



Based on Taylor expansion of the exponential power   2
))(()( pttbptt ijij   in the field of 

unknown discrete coordinates p̂  and k̂  of the ij-th point scatterers, (4) can be rewritten as 
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where )ˆ,ˆ( kpa  is the image function, the projection of ija  onto (p, k) signal plane, ),( kp  is the 

phase term of second and higher order, 1ˆ,0ˆ  Np , 1ˆ,0ˆ  Kk , N̂  and K̂  denote the full 

number of reference image points on cross range direction and range direction, respectively. 

 

3. Sparse decomposition approach to solve the image reconstruction problem 

 

Assume 0),(  kp , then  (5) in matrix form can be rewritten as [10] 
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where )( KN S is the full length measurement signal matrix, 
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cross range Discrete Fourier Transform (DFT) matrix (cross-range matrix-dictionary),  
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exp)ˆ(K  is the range DFT matrix (range matrix-dictionary), )ˆˆ( KN A  is the 

image matrix. 

Expression (6) denotes 2-D discrete Fourier decomposition of the sar signal in A matrix form. 

It means that the two-dimensional signal KNRS is a linear combination of columns of 

matrices P and K. In case NN ˆ  (complete measurement) the decomposition (6) is unique, it 

means that there exists a unique sparsest solution for A. Define compressed measurement 

matrix 
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over the redundant Fourier dictionaries NN
p

ˆ'.ˆ  RPΦP  and KK
k

ˆ'ˆ  RKΦK , where 

)'(Φ NNp  and )'( KKk Φ are pseudo identity sensing matrices, W  is the white Gaussian noise 

matrix. In overcomplete case NN ˆ'  and KK ˆ'  the matrix X  does not have unique 

decomposition. The image reconstruction problem can be solved by definition of sparse 

decomposition of the measurement signal as follows 
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where 
0

Amin  is the 0l - norm that denotes the number of non-zero point scatterer intensities 

in image matrix A, that means to find out the image matrix A with as much zero entries as 

possible, 
2

2

ˆˆ T
K.A.PX   denotes the square of the Euclidian norm,  is a small constant. A 

Gaussian function is used to approximate the 0l - norm, i.e.  
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where   is the variance of the white Gaussian noise. Then 0l -norm,
0

Amin  can be obtained 

be maximizing of the Gaussian function 




























1ˆ

0ˆ

1ˆ

0ˆ
2

2
ˆ,ˆ

2

ˆ

exp)(

N

p

K

k

kp
a

F A  onto the feasible set 

 T
KAPXA ˆ..ˆ  by a steepest ascent algorithm followed by projection onto the feasible set. 

Maximization of )(AF  means increasing the number of zeros entries in the image matrix A.  

 

Numerical experiment 

SAR parameters: carrier frequency 1010 Hz, frequency bandwidth 710.5.2F Hz, pulse 

repetition period 310.5.2  s, LFM pulsewidth 610.5.2  s, number of emitted pulses 1024pN , 

number of range samples 1024K . The geometry of the observed scene is defined by standard 

“peaks” function. The full length SAR signal reflected from the “peaks” surface, modeled by 

the matrix decomposition (6) of the signal matrix S(10241024) is presented in Fig. 1. The 

original image of the relief described by the function “peaks” and extracted from the SAR 

signal with dimensions [10241024] is depicted in Fig. 2.  

 

  
Fig. 1. SAR signal full length Fig. 2. Original image of the surface 

 

        

                        

Compressed sensing measurement matrix X(6464) obtained by the multiplication of the 

signal complex matrix S(10241024) with sensing pseudo identity matrices )(Φ 102464p  and 

)102464( kΦ , and additive Gaussian noise W(6464) (Eq. 7), is presented in Fig. 3. 

  
Fig. 3. Compressed sensing SAR 

signal 

Fig. 4. SAR image obtained by l0 

norm 



 

As can be seen in Fig. 4 the final image obtained from compressed sensing measurement data 

and reconstructed by application of l0 norm optimization has satisfactory resolution. In 

comparison with the original image of the observed surface (Fig. 1), the main peaks of the 

observed surface are clearly defined in the image obtained by compressed sensing of 

measurement data (Fig. 4). The computational results prove the correctness of the signal 

model and image reconstruction algorithm based on sparse decomposition of the SAR signal 

and l0 norm minimization. 

 

3. Kalman Image Reconstruction 
A. Vector Measurement Equation and State Equation 

Kalman image reconstruction is a recurrent Kalman filtration defined by the following vector 

measurement and state equations 
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where ),(ξ kp  is the ]);([ 12 LK   column vector,  )(a,,S pkp  is the deterministic process in the 

field of vector arguments )( pa , and yields a column-vector with dimensions ]);([ 12 LK  ; 

)](a,,[g 1pkp is a column-vector function that describes the variation of the vector arguments 

at discrete time moments yielding dimensions of  1;JI  ; ),(n kp , ),(n kp0 are sequences of 

random vector values with zero expectation and covariance matrices ),( kp with dimensions 

)]();([ LKLK  22  and )(V p   with dimensions  JIJI  ; , respectively. The vector )(a p , with 

dimensions  1;JI   accounts for a vector estimates of intensities of point scatterers ija . 

In order to model quadrature components of the ISAR trajectory signal, it is supposed that in 

the Cartesian coordinate space Oxy an object moves with a rectilinear trajectory at a constant 

speed V . The object is situated in a coordinate grid whose origin may coincide with the 

geometric centre of the object. The shape of the object is described by the intensities 

(reflection coefficients) ija  of point scatterers distributed in accordance with its geometry.  

 

B. Approximation Functions 

In the general case, the functions  )(a,,S pkp  and )](a,,[g 1pkp  in (10) would be non-linear. 

This circumstance would lead to ambiguity in invariant parameter definition. One of the main 

purposes of the present work is to reveal the composition of  )(a,,S pkp  and )](a,,[g 1pkp  

under linear approximation and to develop an algorithm for a quasi-linear Kalman filtration of 

the invariant vector parameters in the complex amplitude of the ISAR trajectory signal. 

The approximation function  )(a,,S pkp  is defined by the quadrature components of a complex 

signal, reflected by the point scatterers, placed on the nods of a uniform grid, i.e. 
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The Taylor’s expansion after ignoring the higher order terms results in the following linear 

equations. 
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where  TIJijJ aaaaap ......,...)(a  21111 is the vector-estimates of the invariant geometrical 

parameters with dimensions , the superscript “ ” denotes matrix transpose, the 

product   denotes the full number of estimates of isotropic point scatterers of the grid 

with intensity ija . The constant coefficients of the Taylor expansion is defined by  
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The coefficients of the linear terms of the Taylor’s expansion (12) defined by the expressions 
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If the vector-estimated parameters are Gaussian and Markov, the state transition matrix 

function  )(a,,g 1pkp , linking the vector estimates of invariant parameters in two consecutive 

moments in linear approximation, is given by the expression 
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where 































ij

pNT
kp expdiag),(g  is the diagonal matrix with dimensions  JIJI  ; , ij  is the 

correlation time of the parameter ija . 

If the observation time, pNT , is considerably less than the correlation time, ij , then the state 

transition matrix ),(g kp becomes approximately an identity matrix, i.e., the estimated 

geometrical parameters are invariant in the ISAR observation time interval. 

 

C. Recurrent Kalman Procedure 

The modified recurrent Kalman procedure for quasilinear estimation of the invariant 

parameters can be defined as follows 
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is the new measurement vector with dimensions ]);([ 12 LK  ; 
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is the measurement prediction vector with dimensions ]);([ 12 LK  ; 

 

),(),(H),(R),(K kpkpkpkp T 1       (22) 

 

is the Kalman filter gain - matrix with dimensions )](;[ LKJI  2 ; ),(R kp is the update state 

error covariance matrix with dimensions  JIJI  ; , determined by 
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is the state-to-measurement transition matrix with dimensions  JILK  );(2 . 

The elements of the matrix ),(H kp  for each Np ,1 can be generally described by expressions: 
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The matrix ),(R kp 1  is the predicted state error covariance matrix with dimensions 

 JIJI  ; . In the beginning of the procedure 1p  the initial predicted state error covariance 

matrix ),(R k0  is an identity matrix. The process noise covariance matrix ),(V kp and the 

measurement covariance matrix ),( kp are diagonal with elements 
pT2

0N
, where 0N  is the 

spectral density of the Gaussian noise. 

 

Numerical experiment 
To substantiate the properties of the developed ISAR signal model and to verify the 

correctness of the developed Kalman image reconstruction procedure a numerical experiment 

is carried out. It is assumed that the target is moving rectilinearly in a 2-D observation 



Cartesian coordinate system Oxy  and is detected in 2-D coordinate system XYO' . The 

trajectory parameters of the target are: the module of the vector velocity 600V  m/s; the 

guiding angle of the vector velocity,  ; the angle between coordinate axes, 0 ; the 

coordinates of the target geometric center at the moment 2/Np  , i.e. the initial coordinates 

of the target geometric centre: 0000 )(x  m, 4
00 1050 .)( y m. The ISAR transmitted pulse is 

characterized be following parameters. The wavelength is 2103  .  m. The pulse repetition 

period is 210.5,2 pT s. The time duration of the transmitted LFM pulse is 610T s. The 

number of samples of LFM ISAR signal is 32K . The carry frequency is 1010f  Hz. The 

dimension of the LFM pulse discrete is 
810.125.3 T  s. The bandwidth of LFM 

transmitted signal is 8103.F Hz. The rate of linear frequency modulation is 141049 .,b . The 

number of transmitted pulses during inverse aperture synthesis is 100N . The target 

geometry is depicted in a 2-D regular rectangular grid, coordinate system XYO'  (Fig. 2). The 

dimensions of the grid’s cell are 50, YX m. The number of the reference points of the 

grid on the axes X  is 20I  and on the axis Y  is 20J  (Fig. 5). Point scatterers are placed at 

each node of the grid. The intensities of the point scatterers placed on the target are 010.ija . 

The intensities of the point scatterers placed out of the target are 0010.ija . The arguments of 

approximation functions are intensities of point scatterers randomly distributed in the object 

space with amplitudes less than 0010.ija . 

 

Fig.5. Discrete structure of the object depicted in the space of the regular grid 

 

 

 

The results of the numerical experiment for different stages of the recurrent Kalman 

procedure are presented in  Figs. 6-9. 

 

  
Fig. 6. ISAR image by p=1 step Fig 7. ISAR image by p=25 step 

 



 

 

  
Fig 8. ISAR image by p=40 step Fig 9. ISAR image by p=100 step 

 

 

As can be seen the quality of the ISAR images is improved with each iteration step. It proves 

the correctness of the ISAR signal model and image reconstruction capability of the Kalman 

method. The described Kalman algorithn distinguishes with high calculation speed, steady 

and quick convergence of computations. Therefore, it could be successfully exploited for 

extracting geometrical parameters from the LFM ISAR data. 

 

8. Conclusions 

First, a SAR image reconstruction algorithm based sparse decomposition has been developed. 

A model of LFM SAR signal reflected from the observed scene, a relief of the earth surface, 

has been presented as a matrix multiplication of three matrices: azimuth (cross range) inverse 

discrete Fourier transform (IDFT) matrix, image matrix and range IDFT matrix. Image 

reconstruction procedure based on l0 norm optimization has been developed and applied over 

reduced number of measurements defined by randomly generated azimuth and range sensing 

matrices. The geometry of the scene has been described by standard “peaks” function. Results 

of numerical experiments has provided correctness of the developed algorithm. 

Second, Kalman image reconstruction algorithm has been developed. Vector measurement 

and vector state equations have been defined. Based on LFM ISAR signal model 

approximation function have been derived. Recurrent Kalman procedure for quasilinear 

estimation of the geoemtrical parameters has been described. Simulation experiments have 

been carried out. It illustrates the capability of the recurrent method for ISAR imaging. The 

recurrent Kalman procedure demonstrates high effectiveness in the target image 

reconstruction using simulated ISAR data. 
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