

Годишник на БСУ том ХХХII, 2015 г.

 194

THE PREDICATE TRANSFORMER AND ITS APPLICATION

IN INTRODUCTION TO PROGRAMMING COURSES

Prof. Magdalina Todorova, PhD
Faculty of Mathematics and Informatics, Sofia University

Prof. Daniela Orozova, PhD
Faculty of Computer Science and Engineering

Burgas Free University

Abstract: Current article is dedicated to sharing the authors’ experience in applying the
predicate transformer in synthesizing (extaraction) totally correct programmes in
introduction to programming courses. The training was delivered in two Bulgarian
universities: Sofia University „St Kliment Ohridski” and Burgas Free University. A brief
overview of known approaches to programme verification is presented, in addition some
problems are analyzed and suggestions for improving the results of education in
programming through using formal methods are discussed. The method for programme
synthesis under discussion is based on a special function called weakest precondition. It
was adapted according to the goals of education in programming based on C++.
Methodologies of verification and synthesis of operators for condition and for cycle
(while) are formulated. An example is used to show the application of the defined
methodology, as well as the use of some techniques for defining the loop invariant. What
is argued is the use of project-based approach in this education. Analysis of this approach
is presented.

Keywords: programme verification, pragramme synthesis, predicate transformer,
education in programming

1. Motivation

The courses in programming are compulsory for all students of informatics in their
first year of education. The main goal of the courses is to develop algorithmic thinking in
the students, as well as to give them the foundation in structural and object-oriented
programming. This knowledge are a prerequisite for studying disciplines such as: data
structures, data bases, operation systems, software architecture, etc. in the next years of
their education.

Another, no less important, goal of education in informatics is developing students’
skills and habits related to the processes of software development, support and
optimization, as well as these related to evaluation of software reliability and correctness.
The degree to which these skills are developed is of crucial importance and is the real
assessment which the software specialist job market gives regarding the quality of
education. The high degree of integration of the information and communication
technologies in almost all applications led to a need of realization of reliable programming
and apparatus tools. Some of the errors in the software could prove to be of little
importance in a sense. However, system mistakes which are critical to security, such as air

Годишник на БСУ том ХХХII, 2015 г.

 195

traffic control systems, power plant control systems, medical equipment control systems,
are not acceptable. Some impressive examples of the consequences from such mistakes
are well known. For example, an error in a command for division of numbers with
floating point in the Intel Pentium processor caused losses estimated at about 500 million
dollars. The crash of the rocket Ariane-5, which is attributed to an error in the flight
control programme, caused losses of more than 370 million dollar. Due to a simple
mistake, again, the medical accelerator Therac 25 caused 6 deaths (Adzhiev, 1998). The
importance of programming code verification makes it a very attractive environment for
training students through adapting scientific research tasks for learning purposes.

Contemporary research shows that the worldwide dominant theoretic-

methodological paradigm of practical education is the constructivism, with its various
theoretical branches and their applications in practice. Constructivism is based upon the
idea for creating and recreating existing cognitive constructs (schemata) in the individual
through the process of gaining new experience, knowledge and activity, and the process of
adapting to the changing reality. Learning, regardless of the domain in which it is initiated
and realized (cognitive, affective, psychomotor and interpersonal), includes a process of
individual transformation (Peytcheva-Forsyth, 2010). According to the constructivists,
people learn by “incorporating and integrating” the new knowledge within the existing
structures of knowledge.

This article analyses the pedagogic efficiency of constructivism in the context of
education in programming through using formal methods of software verification.

The following software verification approaches can be found in the literature:
review (inspection), static code analysis, formal methods, dynamic methods, synthetic
methods.

In order to check the programme code correctness, testing (a dynamic method of
verification) is the most commonly applied in education in programming. Methods of
formal verification are also used, however more rarely. The formal verification, in
contrast to the other methods of verification, is based on the mathematical proof of
programme correctness. In comparison to the other methods of verification, it is the most
effective and reliable verification method, whose drawback is that it requires significant
effort and qualified specialists in order to be applied.

In the last years, proving programme correctness has become of significant
importance for the informatics science. The programming process consists of writing
programmes, annotating them by preconditions and postconditions, which define the
input/output specification of the programmes and prove their correctness.

However, all popular methods of programme formal verification are laborious. This
justifies the need programmes to be synthesized (extracted from their formal specification), i.e.
to be constructed in parallel with the proof that they are correct.

The authors of this article have been applying different formal methods of
programme verification in introductory courses in programming for more than 10 years.
Some results were shared in (Todorova and Armyanov, 2012; Todorova, 2013). A
technique for formal programme verification during programme execution, as well as its
introduction in education in programming, is presented in (Todorova and Armyanov,
2012). In (Todorova, 2013), the application of axiomatic semantics and the techniques:
design by contract, class invariant, proving theorems and consistency check is shown, as
applied in the courses Introduction to Programming, Object Oriented Programming and
Data Structures and Programming.

Годишник на БСУ том ХХХII, 2015 г.

 196

Current article is dedicated to applying predicate transformer in synthesizing Algol-
like programmes, and programmes in C++ in particular, in the course Introduction to
Programming. The choice of this method is justified by the knowledge the students
possess at the end of the first term of their education: Bachelor’s Degree students of the
specialties Computer Science and Software Engineering.

A flaw in education to a great extent is the isolation of the courses from one another,
and the lack of a single guiding strategy in structuring the learning content. The article
motivates the choice of the Project Based Approach in teaching disciplines in the area,
which allows for combining more requirements and knowledge, acquired in previous or
parallel courses.

2. Predicate transformer and its applying in imperative programme synthesis

The synthesis method we use is based on a special function called predicate
transformer.

2.1. Predicate transformer definition and semantics
For educational purposes, we use a predicate transformer known as weakest

preconditions, introduced by Dijkstra (Dijkstra, 1975).

Definition 1. Let S is an operator, and R is a predicate, which describes the result

anticipated from the execution of the operator S. The predicate transformer for S and R is
the predicate Wp(S, R), which represents the set of all states such that execution of S
started in any one of them is guaranteed to terminate in a finite amount of time in a state
satisfying R.

Let R is a predicate. What follows are definitions of Wp for the operators of C++:

empty, block, operator for assigning, operator for condition (full and short form), and
operator for cycle while.

Definition 2. Wp(empty operator, R) = R.

Definition 3. Wp(x = e, R) = domain(e) R(xe), where domain(e) is a predicate,
describing the set of all states in which the expression e is defined, and R(xe) is the
predicate R where free occurrences of x are replaced by e.

Definition 4. Wp(S1;S2;...;Sn, R) = Wp(S1,Wp(S2; ...; Sn, R)), where S1, S2, ..., Sn
are operators belonging to the subset of C++ under consideration.

Definition 5. Wp({S1; S2;...; Sn}, R) = Wp(S1; S2;...; Sn, R), where S1, S2,..., Sn
are operators belonging to the subset of C++ under consideration.

Definition 6. Wp(if(B) S1;else S2, R) = domain(B) 

 (B Wp(S1, R))  (B Wp(S2, R)).

In particular:

Wp(if(B)S, R) = domain(B) (B Wp(S, R)) (B R).

Годишник на БСУ том ХХХII, 2015 г.

 197

It is often not necessary a predicate transformer Wp(if(B)S1;else S2, R) or Wp(if(B)S, R)
to be found, but only to check whether the implication Q Wp(if(B) S1; else S2, R) or
Q Wp(if (B) S, R) holds. The following theorem is useful in these cases:

Theorem 1. Let for the operator

if (B) S1; else S2

and the predicates Q and R the following conditions are true:

a) Q  domain(B)

b) Q B Wp(S1, R)

c) Q  B Wp(S2, R).
Then (and only then) it is true:

Q Wp(if (B) S1; else S2, R).

Consequence. Let for the operator

if (B) S;
and the predicates Q and R the following conditions are true:

a) Q domain(B)
b) Q B Wp(S, R)
c) Q B R.

Then (and only then) it is true: Q Wp(if (B) S, R).

As it is not easy in practice to use the definition of predicate transformer for the operator
while, we formulated a theorem, through which the truthfulness of the implication can be
checked

Q Wp(while (B) S, R).

To this end we connect with the operator while (B) S:
a) loop invariant P – predicate, which is true before and after each iteration of a loop;
b) bound function t – an integer function, which is the upper limit of the number of

iteration left to be performed. The function t must be bounded below by 0 and to decline
by 1 at each iteration of the loop execution.

Theorem 2. Let for the predicate P and the integer function t the following
conditions hold:

а) P B Wp(S, P)
b) P B t > 0
c) P B Wp(t1 = t; S, t<t1),

where t1 is the new identifier. Then the following condition holds:

PWp(while (B) S, P B).

Годишник на БСУ том ХХХII, 2015 г.

 198

2.2. Method for programme synthesis through using predicate transformer

The method is adaptation of the one described in (Gries, 1981). It is adjusted to
programme synthesis based on subset of C++. Following Theorem 1 and its consequence,
we define the next methodology of synthesis of if/else and if operators.

Methodology of synthesis of:

 а) the operator if/else

1. Find condition B, operators S1 and S2 so the following implications to hold:

 Q B Wp(S1, R)
 Q B Wp(S2, R)

2. Check is the following holds: Q  domain(B).

 b) the operator if – short form

 1. Find condition B and operator S so the following implications to hold:
 Q  B Wp(S, R)

Q  B R
 2. Check is the following holds: Q  domain(B).

 If requirement 2) does not hold, make changes in the conditions and the operators
found, so 2) to hold.

As a consequence of Theorem 2, a list can be formulated, consisting of conditions
for verifications and synthesis of the operator while.
Let the operator while is given, appropriately annotated with a precondition, invariant,
bound function and postcondition:

{Q: precondition}
{P: invariant}
{t: bound function}
 while (B) S;
{R: postcondition}

List of conditions for verification of while-loop

1) P holds before the operator for cycle, i.e. either Q  P holds, or an operator S0
exists so that Q Wp(S0, P) holds.

2) P  B Wp(S, P), i.e. P is a loop invariant.
3) P B R, i.e. the postcondition holds at the moment of ending the execution

of the operator for cycle.
4) P B t > 0, i.e. t is bounded below by 0 as long as execution of the loop has

not terminated.
5) P B Wp(t1 = t; S, t<t1), i.e. each iteration of the loop leads to a strict

decrease of the bounding function t.

Based on this list of verification conditions, we describe the following methodology of
synthesis of a programme fragment containing the operator for cycle while.

Годишник на БСУ том ХХХII, 2015 г.

 199

Methodology of synthesis of a programme fragment containing the operator while

1. Check if Q P holds. If it does not, search for an operator S0 so the implication
Q  Wp(S0, P) to hold.

2. Find condition B so P  B R to hold.
3. Check if P B t > 0 holds for the found condition B. If the condition does not

hold, change t so that the condition to be fulfilled.
4. Find operator S so that the following conditions to hold:

 P B Wp(t1 = t; S, t<t1)
 P B Wp(S, P).

One of the most difficult aspects of the method is the choice of a loop invariant. Different
approaches for its construction exist. The most commonly used are: deleting a conjunct,
replacing a constant by a variable, combining pre- and postconditions. The following
example is selected in order to allow for easy synthesis larger amount of programme
fragments based on a given formal input/output specification by using some of the above
described techniques for invariant choice.

 2.3. Example

An integer is given: n, n0. Synthesize a programme fragment in C++, which finds
the largest integer a, whose square is not bigger than n.

 Following the task, we define a precondition Q and postcondition R:

Q: n0
R: a0 a2≤n n<(a+1)2.

I solution:

If the third conjunctive member of R is deleted, the result is the following possible
invariant:

P: a0 a2 ≤n

We choose a bound function:

t: n-a2.

After performing the steps of the methodology of synthesis of the operator while, the
following fragment is the result:

First synthesized programme
a = 0;
while (n >= (a+1)*(a+1)) a = a+1;

II solution:

If the second conjunctive member of R is deleted, the result is the following possible
invariant:

Годишник на БСУ том ХХХII, 2015 г.

 200

P: a0 n<(a+1)2

We choose a bound function:

t: (a+1)2-n.

After performing the steps of the methodology of synthesis of the operator while, the
following fragment is the result:

Second synthesized programme
a = n;
while (n<a*a) a=a-1;

III solution:

The invariant P is found by replacing a+1 from R by the variable b and the limits of b are
stated, i.e.:

P: a0 a2≤n<b2 a<b≤n+1

We choose a bound function:

t: b-a-1.

Following the methodology for synthesis of the operator while for S0 and B, we find:

S0: a = 0; b = n+1;

B: b != a+1

In this case, we search for the body of the cycle S in the following form:

S: a = g1(n, a, b); b = g2(n, a, b);

where g1 and g2 are integer functions.
The condition P B Wp(t1 = t; S, t<t1) results in the following possible choices of the
functions g1 and g2:

а) g1(n, a, b) = a+1; g2(n, a, b) = b, the respective body of the cycle can be in the
following form S1: a=a+1;

b) g1(n, a, b) = a; g2(n, a, b) = b-1, the respective body of the cycle can be in the
following form S2: b=b-1;

c) g1(n, a, b) = (a+b)/2; g2(n, a, b) = b, the respective body of the cycle can be in the
following form S3: a = (a+b)/2;

d) g1(n, a, b) = a; g2(n, a, b) = (a+b)/2, the respective body of the cycle can be in the
following form S4: b = (a+b)/2;

None of the found operators S1, S2, S3 and S4 can be used for a body for the cycle as the
condition P B Wp(S, P) does not hold for any of them. We try to synthesize if
operator, which to serve a body of the operator for cycle. As the following implications
are true:

Годишник на БСУ том ХХХII, 2015 г.

 201

P B (a+1)2≤n Wp(S1, P)
P B (a+1)2>n Wp(S2, P)

when applying Theorem 1, the next implication holds:

P B Wp(S, P),

where
 S: if ((a+1)*(a+1) <= n) a=a+1; else b=b-1;

Thus the following programme segment is the result:

As the following implications are true:

P B n<(b-1)2 Wp(S2, P)
P B (b-1)2≤n Wp(S1, P)

when applying Theorem 1, the next implication holds:

 P B Wp(S, P),

where

 S: if (n < (b-1)*(b-1)) b=b-1; else a =a+1;

Thus the following programme segment is the result:

Forth synthesized progarmme
a=0; b=n+1;
while (b!=a+1)
 if (n<(b-1)*(b-1)) b=b-1;
 else a=a+1;

Lastly, as the following implications are true:

P B ((a+b)/2)2 ≤ n Wp(S3, P)
P B n < ((a+b)/2)2 Wp(S4, P)

when applying Theorem 1, the next implication holds:

P B Wp(S, P),

where

S: if ((a+b)/2*(a+b)/2<=n) a=(a+b)/2;
 else b=(a+b)/2;

Third synthesized programme
a=0; b=n+1;
while (b!=a+1)
 if ((a+1)*(a+1)<=n) a=a+1;
 else b=b-1;

Годишник на БСУ том ХХХII, 2015 г.

 202

Thus the following programme segment is the result:

a=0; b=n+1;
while (a+1 != b)
 if (((a+b)/2)*((a+b)/2)<=n) a=(a+b)/2;
 else b=(a+b)/2;

which can be simplified to:

Fifth synthesized programme
a=0; b=n+1;
while (b != a+1)
 { int x=(a+b)/2;
 if (x*x<=n) a=x;
 else b=x;
 }

It can be seen from this description that, in order to master and apply the method of

programme synthesis, the students are required to have a very good knowledge of
mathematics and basic knowledge of predicate calculus. A prerequisite for meeting this
requirement is the parallel education in different mathematics disciplines: Algebra,
Geometry, Discrete Structures, and Analysis. Support of the training in the field could
also be secured by early introducing the terminology: precondition, postcondition, loop
invariant and bound function. From the very first lectures of the course Introduction to
Programming, the students are motivated to annotate all programme fragments by
appropriate formal specifications; and to check if these specifications hold during
programme execution as part of their work during the lab sessions.

3. Realization of the training and analysis of the results

Taking into consideration the difficult subject area and the need for applying
knowledge from different disciplines, as well as from practice, an appropriate educational
approach is project-based, which ensures high results in these cases.

 Project-based learning (PBL) is a pedagogic model of interdisciplinary activities,
related to real-life problems. This is a challenge for the learners to construct and aquire
high-level knowledge and skills. The educational goals are related on the one hand to the
project field, on the other hand: to developing skills for working on a project (Orozova,
2008). The basic skills to be developed by the students are: identifying the stages of
project development; activity planning; keeping deadlines; collaborating with other team
members; evaluating the contribution of the team members; self-evaluating; discussing on
the project area and formulating and argumentatively defending own ideas and skills.

What can be achieved through team working on projects are:
- a closer connection between education and practical needs;
- enhanced cognitive activity, required of the student;
- evaluation of the developed practical skills, where the marking defines the

development towards achieving the project goals;
- overcoming the difficulties encountered in collaborative working.

Годишник на БСУ том ХХХII, 2015 г.

 203

Having presented the theoretical basics and having given examples of application of
the method of predicate transformer in synthesis of programmes using different primitive
and composite structures, taught in the introductory course in programming, the students
are given research tasks related to its application. The lab sessions on the discipline are
dedicated to giving explanations on: the educational method used – PBL, the learning
environment Wiki; the teams are formed (usually of two students).

An important part of PBL is project preparation and planning. The activities are
related to formulating the tasks, defining the stages of work, the sub-tasks, deadlines,
information resources, milestones, etc.

The main activities of the students performing project work, which were applied

during the training, could be identified as (Tuparova and Tuparov, 2010):
- defining the tasks and discussing the topics for each group (team);
- defining the different subtasks and assigning them to particular students in the

team;
- defining the timetable for execution;
- defining the milestones and the particular artifacts which must be produced at

each stage;
- defining the form of the final project results;
- presenting the project, related to: presenting the tasks, which were completed to

achieve the goals; description of the results; answering questions related to the
project topic and the tools used for working on the project.

- documenting, related to: technical parameters of the task, work plan, interim
results and discussions;

- reporting the results: preparing a presentation, presenting text or table data,
presenting the project to an audience.

Another important side of PBL is that the assessment criteria and means must be

defined and announced. The criteria we used for the training under consideration were:
- defining what is to be assessed: goals achievement, keeping deadlines, quality of

the product, etc.
- defining what means to be used to assess: formative assessment (observation,

check-lists), summative assessment and marking of the final products, the work
of the team and each of its members, project presentation and defense.

In addition, environment must be provided for the students to share opinions and
evaluation regarding the quality and characteristics of the achieved solutions, using
different technologies. The students should be given the opportunity to compare and
evaluate the results achieved by the other teams.

In the course under investigation, using the approach mentioned above, we use Wiki
environment for public and absolutely transparent environment for documenting the
process of project development, as well as for communication among the participants.
Communication is Wiki is at three levels: between the lecturer and all students, among the
team members, and among the teams. The coordination and communication at the team
level are of crucial importance. The philosophy and technology behind Wiki ensure the
users to have relative equality and autonomy in the process of working, and the
communication is „horizontal”, of the kind many-to-many. This feature totally reflects the
contemporary understanding of interactive and collaborative learning, which is focused on
the learner, while the lecturer takes the new role of facilitator and mediator (Atanassova

Годишник на БСУ том ХХХII, 2015 г.

 204

and Orozova, 2011). Saving all versions of each page in the form of detailed history and
its availability at all times allows the contribution of each student to be identified.

Taking into account the requirements for project documentation design, formulated

by experiences methodologists, we defined the following elements for the documentation
of each project:

 a timetable agreed among the team members, which corresponds to the activity
timing and respective person; the timetable should make it clear which are the
key moments and relations between the activities (for example, a diagram of the
sequence could be used);

 team discussions on the given task and the problems it entails, including
discussing different approaches for solving them and relevant information
sources;

 personal notes of the different members on the respective activities;
 a diary with the concrete individual activities with justification on each change of

the project condition;
 individual reports, stage reports and a common (team) report on the given tasks;
 collection of correctly cited resources (literature, internet addresses, developer’s

and users’ manuals, etc.), which are used by the students to justify their decisions.

The most important part of the project work is finding a correct solution to the given

problem. In the particular case, the students must find a solution to tasks related synthesis
of C++ programmes. Finding solution goes through four main steps (stages), visualized on
fig. 1:

(1) Define the input/output specification, which the synthesized programme must
satisfy. In case the task presupposes a cyclic process, an invariant and bound
function for the operator of the cycle are defined.

(2) Apply the methodology for synthesis of a progarmme segment, containing the
operator while. In case the implication Q  P does not hold, first check if S0
can be assignment operator so that Q  Wp(S0, P) to hold. If this is not
possible, the methodology for synthesis of an if-operator is applied and S0 in the
form of an if-operator is searched for. Defining the operator S, giving the body
of the operator of cycle, begins by checking if S can be assignment operator,
then – if-operator.

(3) Try to find more solutions of the task. In order to do this, use so far unapplied
techniques for defining cycle invariant: deleting a conjunct, replacing a constant
by a variable, combining pre- and postconditions, etc.

(4) Using C++ programming environment, additional verification checks of the
synthesized programmes correctness should be performed. This stage is to
restate our belief that a perfect verification method does not exist.

Fig. 1. Working along the project stages

Giving the
task

(1) (2) (3) (4)
Public
defense

Documenting in Wiki

Годишник на БСУ том ХХХII, 2015 г.

 205

The analysis of the conducted training was performed at three stages: immediately
after the project defenses; after the exam on Introduction to Programming, and after the
students realization as software specialists. The analysis is based on students’
achievements, their activity during the lectures and lab sessions, and on communication
between lecturers and students via various channels (consultancy, forum, e-mail).

The data collected are used for statistical analysis of students’ skills. What is
assessed is the knowledge and errors the students make, with the focus on the latter during
the next stages of education.

The data analysis shows that, despite the difficulties which appear during the work,
the application of the method of predicate transformer for the purposes of education in
informatics is realistic and efficient. We found with satisfaction that, during the training,
the students are enthusiastic about searching for non-traditional and original ways of
solving the tasks, especially at the stages of defining the specification, as well as about
project development and documentation. It is often during the work that students
additionally encounter and use scientific results, which are not presented as a learning
material in the current courses.

Applying Project-Based Learning also met our expectations for effectiveness. Its use
stimulates students’ interest and made their project work close to scientific research.

Although the goals were completely fulfilled primarily by students with good
background in both programming and mathematics, we argue that the suggested approach
is relevant to a great extent for this type of training. As a result of the training, students
awareness was raised regarding the application of methods of formal verification (and in
particular the method of synthesis of C++ programmes) and the benefits they give. They
also got the awareness that programming is a serious scientific activity. In addition, they
realized the importance of the activities related to verification of programme code.
Furthermore, they developed understanding about the usefulness of mathematical
specifications for the process of programming, as well as for the design of the programme
code. Students reached the understanding that mathematic knowledge is needed in
programme development.

We also registered raised motivation in the students with lower levels in
mathematics towards higher efforts to improve in this area. Secondary goals, such as
identification and development of team working skills, were also achieved. Though the
process of solving problems together, the students gained skills in collaboration.

After completing the course, we ran an additional test in order to identify the degree
of knowledge retention and to compare with the project assessment. Both the test and the
project can have a maximum of 20 points. The results are gathered in three groups (from 8
to 12 points, from 12 to 16 points, and from 16 to 20 points) and are presented in fig. 2.

Годишник на БСУ том ХХХII, 2015 г.

 206

Fig. 2. Results of the test and the project

The analysis of the results of the test, the project and the final assessment of the
discipline Introduction to Programming show a tendency towards increasing students’
degree of knowledge gain in comparison to these trained without formal methods.
Questionnaires were administered at the end of the training, which aimed at researching
on the students’ interest towards applying formal methods of verification and synthesis of
programmes in the introductory programming courses. The results show that, despite the
difficulties, the students are motivated to study and apply such methods; and that using
PBL in such courses is a prerequisite for active learning. Some of the students who were
trained via the method of predicate transformer for programme verification and synthesis
were motivated to research the area and defended theses in the field of programme code
synthesis (Trifonov, 2012; Nikolov, 2013).

4. Conclusion
The main conclusion made by the authors is that the education in programming must

follow the requirements of the software market, as well as the development in the
information and communication technologies. The latter are rapidly introduced in the
everyday life and become the foundation of contemporary society. Considering this,
special attention should be given to introducing the most effective and reliable methods
and techniques for programme code verification, which to follow this dynamics.

The authors have been working with the belief to make a step ahead in this direction.
The results of the education motivate further research on adapting techniques and
application for formal verification in education.

Project-Based Learning used as a learning method in this context supports not only
to increase the effectiveness, but also to create software professionals of the students.
Working on a project the students have to: study the given task; collect and analyze data
from different resources; share, generate and discuss different ideas; make own justified
suggestions, hypotheses and predictions; conduct and analyze own experiments; create
artifacts (reports, data bases, multimedia, prototypes, etc.); create proofs, make summaries
and conclusions; report and present their ideas and findings in public; identify new
problems and questions. Together with the “hard” skills connected to the particular
discipline, the learners also develop “soft” social skills, which are manifested by more
responsibility regarding the personal contribution in the team work, and improved
communication skills and coordination within the team.

Годишник на БСУ том ХХХII, 2015 г.

 207

References:

1. Adzhiev, V. (1998). Safeware Myths: Lessons of Famous Catastrophes, Open Systems
Journal, Moscow, 6(32), 21-30 (in Russian).

2. Atanassova, V., Orozova, D. (2011). Project-based Learning on Databases in a Wiki,
International Conference of Free University of Burgas, 279-286 (in Bulgarian).

3. Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of
programs, Communications of the ACM, vol. 18, Issue 8, 453-457.

4. Gries, D. (1981). The Science of Programming, Springer-Verlag, New York.
5. Nikolov, K. (2013). Analysis and extraction of programs (models and methods for

verification of properties of non-relational databases), Sofia University, Bulgaria,
Supervisor: M. Todorova.

6. Orozova, D. (2008). Possibilities of Project-based Learning, Burgas Free University
Annual, Volume XIX, 301-305 (in Bulgarian).

7. Peytcheva-Forsyth, R. (2010). E-Learning - theory, practice, pedagogical aspects of
the design, Sofia University e-Journal, 1, 1-7 (in Bulgarian).

8. Todorova, M., Armyanov, P. (2012). Runtime Verification of Computer Programs and
its Application in Programming Education, Global Science and Technology Forum:
International Journal of Mathematics, Statistics and Operations Research, Vol. 1, No.
1, Singapore, 105-110.

9. Todorova, M. (2013). Applying Program Verification Methods in Software Specialists
Education, Proceedings of INTED2013 Conference 4th-6th March 2013, Valencia,
Spain, 6260 – 6270.

10. Trifonov Tr. (2012). Analysis of methods for extraction of programs from non-
constructive proofs, Ludwig-Maximilians-Universität, Münhcen, Germany,
Supervisor: H. Schwichtenberg.

11. Tuparova, D., Tuparov, G. (2010). Management of students’ participation in e-
learning collaborative activities, Procedia - Social and Behavioral Sciences, Vol.2,
Issue 2, 4757–4762.

